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Fixed points, stability, and intermittency in a shell model for advection of passive scalars

Julien Kockelkoren* and Mogens H. Jensen†

Niels Bohr Institute and Center for Chaos and Turbulence Studies, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark
~Received 22 November 1999!

We investigate the fixed points of a shell model for the turbulent advection of passive scalars introduced in
Jensen, Paladin, and Vulpiani@Phys. Rev. A45, 7214~1992!#. The passive scalar field is driven by the velocity
field of the popular Gledzer-Ohkitani-Yamada~GOY! shell model. The scaling behavior of the static solutions
is found to differ significantly from Obukhov–Corrsin scalingun;kn

21/3, which is only recovered in the limit
where the diffusivity vanishes,D→0. From the eigenvalue spectrum we show that any perturbation in the
scalar will always damp out, i.e., the eigenvalues of the scalar are negative and are decoupled from the
eigenvalues of the velocity. We estimate Lyapunov exponents and the intermittency parameters using a defi-
nition proposed by Benzi, Paladin, Parisi, and Vulpiani@J. Phys. A18, 2157~1985!#. The full model is found
to be as chaotic as the GOY model, measured by the maximal Lyapunov exponent, but is more intermittent.

PACS number~s!: 47.27.Jv, 05.45.2a, 05.65.1b
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I. INTRODUCTION

The origin of intermittency in fully developed turbulenc
is still a largely open question. Progress has been made in
somewhat simpler problem of the anomalous scaling in
passive advection of a scalar quantity~e.g., temperature o
the density of a pollutant! @1,2#. Fundamental analytical re
sults have been obtained when the advecting velocity fi
was assumed to be Gaussian and delta-correlated in time
so-called Kraichnan model@3–5#, and in the context of shel
models@6#. Here we consider the perhaps more realistic s
ation where the passive scalar shell model is driven b
non-Gaussian velocity field with finite correlation tim
namely the velocity field of the Gledzer-Ohkitani-Yama
~GOY! model @7,8#. In this case the model can be analyz
using standard techniques of~low! dimensional dynamica
systems, e.g., the study of bifurcations, eigenvalue spe
and Lyapunov exponents.

In the absence of convective effects the passive sc
field Q is governed by the equation

] tQ1~v•“ !Q5D¹2Q1FQ . ~1!

Herev is the velocity fieldFQ is an external forcing andD is
the diffusion coefficient.

According to the analog of the K41 theory@9# for the
passive scalar, developed by Obukhov and Corrsin@10#, the
structure functions

Sp~r !5^uQ~x1r !2Q~x!up&; l Hp ~2!

~where l 5ur u) scale linearly withp, more preciselyH(p)
5p/3. Experimentally, however, one observes forp.3 @11#
strong deviations from this. This is usually referred to
anomalous scaling or intermittency. The deviations seem
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be even more pronounced than for the structure function
the velocity: the passive scalar is said to be more interm
tent.

This paper is organized as follows: after having intr
duced the model, we examine in Sec. III the scaling of
fixed points and in Sec. IV their stability. These studies ha
already been performed for the GOY model@12–14#, to
which the passive scalar model is coupled. We will revie
these results for the sake of completeness. In Sec. V
study the full dynamics of the model and investigate its c
otic and intermittent behavior.

II. SHELL MODEL FOR PASSIVE SCALARS

Shell models appear to capture many properties of fu
developed turbulent flows but are easier to study than
Navier–Stokes equations~see Ref.@15# for a review!. In this
paper we study the passive scalar shell model propose
Ref. @1#. The multiscaling of the model is in good agreeme
with experimental data@11#. The GOY model has been stud
ied intensively@7,8,12–22,24#; the passive scalar model ha
attracted somewhat less attention@6,24,25#.

Both models are constructed in Fourier space, retain
only the complex modesun andun as a representative of a
modes in the shell of wave numberk betweenkn5k0ln and
kn11. One uses the following assumptions:~i! the dissipa-
tion, respectively diffusion is represented by a linear term
the form:2nkn

2un , respectively2Dkn
2un , ~ii ! the nonlinear

terms of the formknun8un9 , respectivelyknun8un9 , with ~iii !
n8 andn9 among the nearest and next-nearest neighbors on,
and~iv! in the absence of forcing and damping conservat
of volume in phase space and conservation of(nuunu2 and

(nuunu2. Moreover the scaling lawsun;kn
21/3 and un

;kn
21/3 form a fixed point of the inviscid unforced equation
The resulting equations are@1#

S d

dt
1nkn

2Dun5 i ~anknun11* un12* 1bnkn21un21* un11*

1cnkn22un21* un22* !1 f dn,4 , ~3!

-
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S d

dt
1Dkn

2D un5 i „en~un21* un11* 2un11* un21* !

1gn~un22* un21* 1un21* un22* !

1hn~un11* un12* 1un12* un11* !…1 f̄ dn,4 .

~4!

A possible choice for the coefficients is

an51 bn52d cn52~12d!, ~5!

en5
kn

2
gn52

kn21

2
hn5

kn11

2
. ~6!

The boundary conditions are

b15bN5c15c25aN215aN50, ~7!

e15eN5g15g25hN215hN50. ~8!

For the parameters, we choose for example the follow
standard values:

N519, l52, k05l24, n51026,

f 5 f̄ 5531023~11 i !, D51026. ~9!

The free parameterd is related to a second quadratic inva
ant which for the canonical valued5 1

2 is similar to the he-
licity @12#.

These equations determine the evolution of the vec
(U,Q)5(Reu1,Im u1, . . . ,ReuN,Im uN,Reu1, . . . ,ImuN)
and thus form a 4N dynamical system.

III. SCALING OF FIXED POINTS

A first step towards a full understanding of the mod
consists of an investigation of its static properties. In t
section we examine the scaling properties of the fixed po
of Eqs. ~3!–~4!. The major problem is to find the static so
lutions of Eq.~3!; those of Eq.~4! can then be found easil
becauseu̇ is linear in bothu andu.

It was found in Ref.@19# that Eq. ~3! in the unforced
inviscid limit allows three self-similar static solutions: th
trivial fixed point un50, a ‘‘Kolmogorov’’ fixed point un

5kn
21/3g1(n), and a ‘‘flux-less’’ fixed pointun5kn

2zg2(n),
with g1(n) andg2(n) any function of period three inn and
z5(2 lnl(d21)11)/3. The corresponding fixed points of E
~4! are: un50, un5kn

21/3g1(n), andun5kn
2(1/2)(12z) . Here

we will focus on the Kolmogorov fixed point which is be
lieved to be the most important for the dynamics@19# al-
though it was suggested that the trivial fixed point might a
play a major role@21#.

We note that the static solution forun5uneifn can be
turned into real form by a change of phase. Followi
Schörghoferet al. @14# we choose the phases
g

r

l
s
ts

o

fn5H 1
4 p for n51,4,7, . . .

1
8 p for n52,5,8, . . .

9
8 p for n53,6,9, . . . .

~10!

It can be shown that the static solution ofu picks up the
same phase as that ofu.

As has been observed@19#, the dynamics of the system
converges to the Kolmogorov fixed point ford,0.379 634.
When increasingd the system undergoes a series of Ho
bifurcations and becomes chaotic atd50.387 04@19,14,22#.
In order to find the Kolmogorov fixed point one can th
vary d in small steps and refine the solution with Newton
method@13#.

To study the scaling behavior of the static solutions,
apply a much larger number of shells, using the same par
eter values as Kadanoffet al. @14#

N590, l52, k05l21, n5D51023316226,

FIG. 1. Static solution of theGOY model atd50.5 for the pa-
rameters, Eq.~11!. To improve the scaling behavior, log2(un11 /un)
is averaged over three consecutive shells.

FIG. 2. Static solution, fixed point, of the passive scalar mo
where log2(un11 /un) ~averaged over three consecutive shells! is
plotted vs the shell indexn. Here, the number of shells isN561.
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f 5 f̄ 51. ~11!

The forcing acts in this case on the first shell.
For the static solution ofun we obtain the same result a

@14# ~see Fig. 1!, where log2(un11 /un) is plotted versusn. It is
averaged over a period three to get rid of the well kno
period three oscillations. The solution is seen to follow K
mogorov scaling.

Surprisingly however, the fixed point forun ~with the
fixed point of un inserted! deviates strongly from the
Obukhov scaling for a finite value of the diffusivityD, as can
be seen in Fig. 2. There is clearly not a well-defined pow
law scaling. This solution also displays the period three
havior. In the diffusive range the solution looks somewh
noisy, presumably due to the boundary conditions. It is cl
that there is a ‘‘slow’’ bending in the diffusive regime but a
D approaches zero, the curve becomes more and more
and we recover the Obukhov scaling in the limitD→0. We
thus note that in contrast to the velocity case where the
cosity only affects the viscous range, for the passive sc
the diffusion seems to act on the whole inertial range, at le
for Prandtl numbers Pr5n/D;1. This might have its origin
in the linear character of the problem.

IV. SCALING OF EIGENVALUE SPECTRA

Now the stability of the Kolmogorov–Obukhov fixe
point is examined in terms of the eigenvalue spectra. T
system@Eqs.~3!–~4!# is written as

H u̇5 f ~u!

u̇5g~u,u!.
~12!

The Jacobian matrix is symbolically given by

J5S ] f ~u!

]u
0

]g~u,u!

]u

]g~u,u!

]u

D . ~13!

The matrix]g(u,u)/]u will not matter for the eigenvalue
of J. The eigenvalues of] f (u)/]u were studied in Refs.@14#
and @13#. It is most convenient to look at disturbances
phase and modulus of the velocity variableun5ūneifn: ūn

5un
(0)1dun and fn5fn

(0)1dfn . One then obtains for the
stability of the modulus

du̇n52( ~Dnm1Cnm!dum . ~14!

The matricesDnm andCnm are the contributions of the dis
sipation and cascade terms, respectively. Their express
are

Dnm5nkn
2dnm ~15!

and
n
-

r
-
t
r

flat

s-
ar
st

e

f

ns

Cnm5
]

]um
„knun11un122dkn21un21un11

2~12d!kn22un21un22…, ~16!

where the index (0) has been dropped for convenience.
The linearized equation for the variation of the phase

dḟn52( ~Dnm2Cnm!dfm . ~17!

Thus the stability eigenvalues of modulus and phases
fer only in a minus sign in front of the cascade term. W
obtain similar results as in Ref.@14#. For values ofd,dbi f
'0.37 all the eigenvalues of both phase and modulus ma
have a negative real part. Above this value, some of the
eigenvalues of the phase matrix turn complex~in pairs! and
cross the imaginary axis. Atd50.5 they have become rea
again, but now positive. This situation is shown in Fig.
The eigenvalues of the modulus matrix eventually turn po
tive at d'0.7. In Fig. 3 we have multiplied both real an
imaginary part with a factorp @14#:

p5
log2~11210usu!

usu
. ~18!

Thus the phase remains unchanged, while the modulu
rescaled. In case the eigenvalues have constant ratios,
are evenly spaced on the plot. Thus we are able to visua
both the very small and very large eigenvalues.

It is quite trivial to generalize this method to the passi
scalar in order to calculate the eigenvalues of]g(u,u)/]u
and one finds

du̇n52(
m

~Dnm
u 1Bnm!dum , ~19!

whereDnm
u is the dissipation term, very similar to the on

before

Dnm
u 5Dkn

2dnm ~20!

FIG. 3. Eigenvalues of phase matrix (L) and amplitude matrix
(h) for the velocity field in a polar plot ford50.5.
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andBnm is the contribution of the cascade term given by

Bnm5
1

2

]

]um
„kn~un21un112un11un21!

2kn21~un22un211un21un22!

1kn11~un12un111un11un12!…. ~21!

We see thatBnm does not depend onu as theu variation will
be differentiated out.

For the phase disturbancedcn one gets

dċn52(
m

~Dnm
u 2Bnm!dcm . ~22!

We note that sinceBn,n125 1
2 kn11un1152Bn12,n and

Bn,n115 1
2 (kn11un121knun21)52Bn11,n , the matrixBnm

is antisymmetric and its eigenvalues will be purely ima
nary. The stability of phase and modulus will thus be t
same. This is actually a consequence of the conservatio
(uunu2. In the model any cascade termanun1n8un1n9 has to
be supplemented by a term2an2n9un1n82n9un2n9 , since
the conservation implies(unu̇n50. The first term gives a
contribution to the matrixBnm : Bn,n1n95anun1n8 , the sec-
ond Bn,n2n952an2n9un1n82n9 which corresponds to
Bn1n9,n52anun1n8 . The matrix is thus antisymmetric an
this is not an artifact of the model since it stems from
conservation law also valid in a real system.

For the eigenvalues of the stability matrixA52(Du

1B) we easily obtain the inequality Res<0 sinceDu is
diagonal with strictly positive elements. This is true wha
ever the driving velocity and thus one does not expect to
any bifurcations.

Indeed one finds that for all values ofd, the spectrum of
eigenvalues of the phase matrix is similar to that shown
Fig. 4, where the eigenvalues are again multiplied byp. One
observes evenly spaced eigenvalues organized in bran
The presence of three branches~in both upper and lower hal
of the complex plane! might be caused by the period three

FIG. 4. Eigenvalues of phase matrix (L) and amplitude matrix
(h) for the passive field in a polar plot atd50.5.
-
e
of

-
d

n

es.

un ~in n). If one inserts in the matrixBnm a fixed point of an
imaginary model without period 3, one finds one branch
each half plane.

Let us now consider what the above imply for the dyna
ics of the model. At timet50, starting from the particular
state of the scalarun(0) we impose a small perturbation
un8(0)5un(0)1dun(0) and determines how the perturbatio
evolves in time, subjected to thesamevelocity field. For
modulus and phase ofdu we have again Eqs.~19! and~22!,
since the matricesDu andB do not depend onu. Because the
eigenvalues ofB2Du have negative real parts, the perturb
tion will damp out, meaning that after some timeun8(t)
;un(t). This has been observed already by Crisantiet al.
@24#. We conclude that the passive scalar cannot be cha
in itself: chaos can only be induced by an irregular veloc
field. But can it be more intermittent? We investigate th
issue in some detail in Sec. V.

V. INTERMITTENCY

The term intermittency is used in different contexts and
precise mathematical definition does not exist. In turbule
one speaks of intermittency corrections to the Kolmogo
or Obukhov–Corrsin power law. In dynamical systems
general, intermittency means the presence of quiescent
ods randomly interrupted by burst. It is believed that the
phenomena are related: the scaling corrections should h
their origin in intermittent behavior~in space and/or time! of
velocity or energy dissipation. Here we ask ourselves
question whether the more pronounced deviations from c
sical scaling for the passive scalar are reflected by a m
intermittent behavior~in time! of the passive scalar field. In
order to test this we invoke a definition of intermittency f
dynamical systems proposed by Benziet al. @2#.

First, the response functionRt(t) is defined as the rate a
which a disturbance vectordx(t) of the systemẋ5 f (x) has
expanded after a timet

Rt~t!5
udx~ t1t!u

udx~ t !u
. ~23!

In chaotic systems one typically observes thatudx(t1t)u
;udx(t)uetl, wherel is the maximum Lyapunov exponen
This maximum Lyaponov exponent can be calculated by
eraging theinstantaneousLyapunov exponents lnRt(t)/t:
l5 lim

t→`
^ ln R(t)&/t.

Intermittency can be thought of as connected to the fl
tuations of the instantaneous Lyapunov exponent. An in
mittency parameterm is thus defined as thevariance of
ln R(t) @2#

^„ln R~t!…2&2^ ln R~t!&25mt. ~24!

In shell models the maximal Lyapunov exponent turns
to be inversely proportional to the time scale of the small
eddies and the disturbance vector~or first Lyapunov vector!
is localized in the inertial range@16,23#. We thus believe the
quantity m characterizes the temporal intermittency of t
cascade process.

Numerically we proceed as follows: the equations of m
tion ~3!–~4! are numerically integrated along the equatio
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for the disturbance vectorḋx5J(x)dx, where (x)5(u,u)
andJ is the Jacobian matrix. We then estimate the respo
function and the first two cumulants of its logarithm. Fro
time to time the disturbance vector is renormalized in or
to avoid numerical overflow@26#.

Consider now the Lyapunov exponents of the full syst
of velocity and passive scalar field, Eqs.~3!–~4!, with the
parameters, Eq.~9!. We distinguish how the perturbation
initially applied equally on both systems (dun5dun
5constant for alln) evolves independently in each of th
two parts of the system. Therefore we introduce respo
functions that measure the expansions on the velocity
Rt

(u)(t) and on the scalar partRt
(u)(t). They are defined as

Rt
(u)~t!5

udu~ t1t!u
udu~ t !u

,

~25!

Rt
(u)~t!5

udu~ t1t!u
udu~ t !u

.

The corresponding maximal Lyapunov exponents is defi
as

l (u)5
^ ln R(u)~t!&

t
, ~26!

and the analog forl (u). This is reminiscent to the ‘‘Eulerian
Lyapunov exponent’’ and ‘‘Lagrangian Lyapunov exp
nent’’ introduced by Crisantiet al. @27,24#. However the
Lagrangian behavior of the particles is only equivalent to
Eulerian passive scalar field in the case of vanishing di
sion.

The intermittency parameters are related to the varia
of ln R(t) is the same way as before. We find numerically

l (u1u)'l (u)'l (u)50.16560.002, ~27!

where we have denoted the Lyapunov exponent for the
system as:l (u1u). One expects theoretically

l (u1u)5max@l (u),l (u)# ~28!

since the disturbance vector will evolve towards the m
expanding direction. For the same reason we expect thalu

<lu: du cannot grow faster thandu since that would mean
that after some time we would have

ḋu5Adu1
]g~u,u!

]u
du'Adu. ~29!

As we have seen the matrixA has all negative eigenvalues s
du would shrink: we face a contradiction and conclude t
lu<lu.

Our result is obviously in agreement with both relation
For the Eulerian and Lagrangian Lyapunov exponent,
has numerically found the generic inequalitylL>lE . The
reason for which we do not find this must be the finite d
fusivity because that causes the eigenvalues ofA to be nega-
tive.
se

r

se
rt

d

e
-

e

ll

t

t

.
e

The intermittency parametersm differ, on the other hand
significantly from each other. We find~for d50.5): m (u1u)

50.12760.003, m (u)50.12560.003, and m (u)50.151
60.003. Thus the passive scalar behaves equally chaotic
more intermittent, than the velocity. In order to understa
this we write the equation foru as follows:

u̇5A~u!u1 f , ~30!

whereA is a matrix depending onu, whose eigenvaluess
fulfill the inequality Res,0. Thus, ifu is constant in time,
u will converge to its fixed pointu52A(u)21f . Alterna-
tively, if u fluctuates as ford50.5 in the GOY model, this
‘‘fixed point’’ will fluctuate as well. Moreover the conver
gence towards it will be irregular since the eigenvalues
A(u) vary. It is therefore natural to expect that the behav
of u is more intermittent than that ofu.

VI. CONCLUSIONS AND OUTLOOK

We studied various properties of a shell model for t
advection of a passive scalar. We calculate its fixed point
show that it does not follow the Obukhov–Corrsin scalin
which is only recovered in the limitD→0. This suggests tha
the scaling properties of the passive scalar are much m
sensitive than the velocity to noninertial properties such
the dissipation and perhaps also the forcing. In experime
the scaling zones of the passive scalar are less clearly
served and some ‘‘nonuniversality’’~with respect to large
scale conditions! seems to have been observed in Ref.@28#.
This however seems to be due to the lack of local isotrop
question which cannot be addressed in the context of sc
models.

Furthermore we have calculated the eigenvalue spect
of the fixed point and shown that the passive scalar par
stable against perturbations. This is in fact not very surp
ing since it follows from conservation of(uuu2. It implies
that the passive scalar field cannot be more chaotic than
velocity.

This is confirmed by measuring Lyapunov exponents
passive scalar and velocity: we findl (u)'l (u). We also mea-
sure intermittency parameters of the passive scalar and
locity. The the passive scalar behaves more intermitten
m (u),m (u), which is in agreement with its more pronounce
deviations from linear scaling. It remains to be seen whet
these relations are ‘‘generic’’ or whether can also findl (u)

,l (u) and m (u),m (u), for instance for lower Prandtl num
bers. It could also be interesting to investigate the relat
between coherent structures in the GOY model@20,21# and
those in the passive scalar model.

ACKNOWLEDGMENTS

J.K. is grateful to the Niels Bohr Institute for their warm
hospitality. Discussions with Hugues Chate´, Ted Janssen
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@4# K. Gawȩdzki and A. Kupiainen, Phys. Rev. Lett.75, 3834
~1995!.

@5# M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev
Phys. Rev. E52, 4924~1995!.

@6# A. Wirth and L. Biferale, Phys. Rev. E54, 4982 ~1996!; R.
Benzi, L. Biferale, and A. Wirth, Phys. Rev. Lett.78, 4926
~1997!.

@7# E.B. Gledzer, Sov. Phys. Dokl.18, 216 ~1973!.
@8# M. Yamada and K. Ohkitani, J. Phys. Soc. Jpn.56, 4210

~1987!; Prog. Theor. Phys.79, 1265~1988!.
@9# A.N. Kolmogorov, Dokl. Akad. Nauk SSSR30, 301 ~1941!;

32, 16 ~1941!.
@10# A.M. Obukhov, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofi

13, 58 ~1949!; S. Corrsin, J. Appl. Phys.22, 469 ~1951!.
@11# G. Ruiz-Chavarria, C. Baudet, and S. Ciliberto, Physica D99,

369 ~1996!.
@12# L. Kadanoff, D. Lohse, J. Wang, and R. Benzi, Phys. Fluids7,

617 ~1995!.
@13# N. Schörghofer, L. Kadanoff, and D. Lohse, Physica D88, 40

~1995!.
.

@14# L. Kadanoff, D. Lohse, and N. Scho¨rghofer, Physica D100,
165 ~1997!.

@15# T. Bohr, M.H. Jensen, G. Paladin, and A. Vulpiani,Dynamical
Systems Approach to Turbulence~Cambridge University Press
Cambridge, 1998!.

@16# M.H. Jensen, G. Paladin, and A. Vulpiani, Phys. Rev. A43,
798 ~1991!.

@17# R. Benzi, L. Biferale, and G. Parisi, Physica D65, 163~1993!.
@18# D. Pisarenko, L. Biferale, D. Courvasier, U. Frisch, and M

Vergassola, Phys. Fluids A65, 2533~1993!.
@19# L. Biferale, A. Lambert, R. Lima, and G. Paladin, Physica

80, 105 ~1995!.
@20# J.-L. Gilson and T. Dombre, Phys. Rev. Lett.79, 5002~1997!.
@21# F. Okkels and M.H. Jensen, Phys. Rev. E57, 6643~1998!.
@22# J. Kockelkoren, F. Okkels, and M.H. Jensen, J. Stat. Phys.93,

833 ~1998!.
@23# M. Yamada and K. Ohkitani, Phys. Rev. E57, 6257~1998!.
@24# A. Crisanti, M.H. Jensen, G. Paladin, and A. Vulpiani, J. Ph

A 26, 6943~1993!.
@25# K.H. Andersen and P. Muratore-Ginanneschi, Phys. Rev. E60,

6663 ~1999!.
@26# G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Mec

canica15, 22 ~1980!.
@27# A. Crisanti, M. Falcioni, G. Paladin, and A. Vulpiani, Riv

Nuovo Cimento14, 1 ~1991!.
@28# J.-F. Pinton, F. Plaza, L. Danaila, P. Le Gal, and F. Anselm

Physica D122, 187 ~1998!.


