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Fixed points, stability, and intermittency in a shell model for advection of passive scalars
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We investigate the fixed points of a shell model for the turbulent advection of passive scalars introduced in
Jensen, Paladin, and Vulpidthys. Rev. A5, 7214(1992). The passive scalar field is driven by the velocity
field of the popular Gledzer-Ohkitani-Yama@aOY) shell model. The scaling behavior of the static solutions
is found to differ significantly from Obukhov—Corrsin scalifig~ krjl’s, which is only recovered in the limit
where the diffusivity vanished) —0. From the eigenvalue spectrum we show that any perturbation in the
scalar will always damp out, i.e., the eigenvalues of the scalar are negative and are decoupled from the
eigenvalues of the velocity. We estimate Lyapunov exponents and the intermittency parameters using a defi-
nition proposed by Benzi, Paladin, Parisi, and VulpighiPhys. A18, 2157(1985]. The full model is found
to be as chaotic as the GOY model, measured by the maximal Lyapunov exponent, but is more intermittent.
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[. INTRODUCTION be even more pronounced than for the structure functions of
the velocity: the passive scalar is said to be more intermit-

The origin of intermittency in fully developed turbulence tent.
is still a largely open question. Progress has been made in the This paper is organized as follows: after having intro-
somewhat simpler problem of the anomalous scaling in theluced the model, we examine in Sec. Il the scaling of its
passive advection of a scalar quantig.g., temperature or fixed points and in Sec. IV their stability. These studies have
the density of a pollutaht{1,2]. Fundamental analytical re- already been performed for the GOY modé2—14, to
sults have been obtained when the advecting velocity fielovhich the passive scalar model is coupled. We will review
was assumed to be Gaussian and delta-correlated in time, thigese results for the sake of completeness. In Sec. V we
so-called Kraichnan modgB—5], and in the context of shell study the full dynamics of the model and investigate its cha-
models[6]. Here we consider the perhaps more realistic situ-otic and intermittent behavior.
ation where the passive scalar shell model is driven by a
non-Gaussian velocity field with finite correlation time,
namely the velocity field of the Gledzer-Ohkitani-Yamada .
(GOY) model([7,8]. In this case the model can be analyzed _Shell models appear to capture many properties of fully
using standard techniques @bw) dimensional dynamical developed turbulent flows but are easier to study than the
systems, e.g., the study of bifurcations, eigenvalue spectrilavier—Stokes equatiorisee Ref[15] for a review. In this
and Lyapunov exponents. paper we study the passive scalar shell model proposed in

In the absence of convective effects the passive scaldref-[1]- The multiscaling of the model is in good agreement
field © is governed by the equation }NI'[h. expenmental datfll]. The GOY model has been stud-
ied intensively[7,8,12—22,2% the passive scalar model has
attracted somewhat less attentid@)24,25.

Both models are constructed in Fourier space, retaining
only the complex modes,, and 6, as a representative of all
modes in the shell of wave numblkeibetweenk,=ky\" and
K,+1. One uses the following assumptior(®: the dissipa-

Il. SHELL MODEL FOR PASSIVE SCALARS

30+(v-V)®=DV?0+Fg. (1)

Herev is the velocity fieldF g is an external forcing anD is
the diffusion coefficient.
According to the analog of the K41 theof$] for the

passive scalar, developed by Obukhov and Cofrsdj, the
structure functions

Sp(N=(|0(x+1)=O(x)[P)~I"" )

(wherel=|r|) scale linearly withp, more preciselyH(p)
= p/3. Experimentally, however, one observes fior 3 [11]

tion, respectively diffusion is represented by a linear term of
the form: — vk2u,, respectively— Dk26,, (ii) the nonlinear
terms of the fornk,u,, u,», respectivelk, 6, u,, with (iii)

n’ andn” among the nearest and next-nearest neighbans of
and(iv) in the absence of forcing and damping conservation
of volume in phase space and conservatior=gfu,|?> and

strong deviations from this. This is usually referred to asZ,|6,|°>. Moreover the scaling Iawsun~k,jl’3 and 6,
anomalous scaling or intermittency. The deviations seem te-k, * form a fixed point of the inviscid unforced equations.
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The resulting equations afé]

d
2 .
(ﬁ—'—ykn Un=l(anan:+1U:+2+bnkn_1U:_1U:+l
+CpKn_oUX_u*_ )+ 68,4, ()
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N FIG. 1. Static solution of theoy model at5=0.5 for the pa-
The boundary conditions are rameters, Eq(11). To improve the scaling behavior, Igg,,..,/u,)
is averaged over three consecutive shells.

b;=by=ci=co=ay-1=ay=0, (7
sm for n=147...
e;=ey=0;=0,=hy_1=hy=0. 8
1= ENT 017027 Nn-1= N (8) b= Lo for n=258... (10
For the parameters, we choose for example the following 2w for n=36,9....

standard values:

It can be shown that the static solution éfpicks up the
same phase as that of
o As has been observdd9], the dynamics of the system
f=f=5x103(1+i), D=10°. (9 converges to the Kolmogorov fixed point for0.379 634.
When increasing’ the system undergoes a series of Hopf
The free parametes is related to a second quadratic invari- Pifurcations and becomes chaoticét 0.387 04{19,14,23.
ant which for the canonical valué= 1! is similar to the he- In order to find the Kolmogorov fixed point one can thus

N=19, A=2, ko=A"% v=10¢,

licity [12]. vary & in small steps and refine the solution with Newton’s
These equations determine the evolution of the vectofethod[13]. , , _ ,
(U,0)=(Reuy,Imuy, . ..,Reuy,Imuy,Redy, . .., Imby) To study the scaling behavior of the static solutions, we

apply a much larger number of shells, using the same param-

and thus form a M dynamical system.
eter values as Kadanoét al. [14]

IIl. SCALING OF FIXED POINTS
N=90, A=2, ko=A"1 v=D=103%x16%,

A first step towards a full understanding of the model
consists of an investigation of its static properties. In this -0.2
section we examine the scaling properties of the fixed points
of Egs.(3)—(4). The major problem is to find the static so- 1 Ong1y |3
lutions of Eq.(3); those of Eq.(4) can then be found easily Og2( On ) '
becausé is linear in bothu and 6. —04 4
It was found in Ref.[19] that Eq.(3) in the unforced 3

inviscid limit allows three self-similar static solutions: the
trivial fixed point u,=0, a “Kolmogorov” fixed pointu, %) R
=k, *3g,(n), and a “flux-less” fixed pointu,=k; g,(n), _06 | oo Pr=100
with g1(n) andg,(n) any function of period three in and ’ <-—-<1 Pr=10000
z=(—1In\(6—1)+1)/3. The corresponding fixed points of Eq.
(4) are: 6,=0, 6,=k, g,(n), and 6,=k, Y212 Here
we will focus on the Kolmogorov fixed point which is be- —0.8 , _
lieved to be the most important for the dynam[d®] al- 0 20 40 60
though it was suggested that the trivial fixed point might also
play a major rold 21]. _

We note that the static solution far,=u,e'?n can be FIG. 2. Static solution, fixed point, of the passive scalar model
turned into real form by a change of phase. Followingwhere log(6,.,/6,) (averaged over three consecutive shelis
Schaghoferet al. [14] we choose the phases plotted vs the shell inder. Here, the number of shells i$=61.
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f=f=1. (12) 50 S
Im(o)p

The forcing acts in this case on the first shell. 30 ¢t © 4

For the static solution ofi,, we obtain the same result as
[14] (see Fig. 1, where log(u, 4 /u,) is plotted versus. It is
averaged over a period three to get rid of the well known 10 | o
period three oscillations. The solution is seen to follow Kol- >
mogorov scaling. -10 }

Surprisingly however, the fixed point fof, (with the
fixed point of u, inserted deviates strongly from the
Obukhov scaling for a finite value of the diffusiviy, as can =30 1 o
be seen in Fig. 2. There is clearly not a well-defined power
law scaling. This solution also displays the period three be- -50 . . 2, . .
havior. In the diffusive range the solution looks somewhat —60 -40 =20 0 20 40 60
noisy, presumably due to the boundary conditions. It is clear Re(a)p

that there is a “slow” bending in the diffusive regime but as

D approaches zero, the curve be_Comes mo_re_and more flat FiG. 3. Eigenvalues of phase matrix’() and amplitude matrix
and we recover the Obukhov scaling in the lidit~=0. We  (O) for the velocity field in a polar plot fos=0.5.

thus note that in contrast to the velocity case where the vis-

cosity only affects the viscous range, for the passive scalar

the diffusion seems to act on the whole inertial range, at least Cnm=w(knun+1un+2— OKn_qUp_1Up41

for Prandtl numbers Rrv/D~1. This might have its origin m

in the linear character of the problem. — (1= 8)K_oUp_1Up—»), (16)
IV. SCALING OF EIGENVALUE SPECTRA where the index (0) has been dropped for convenience.

The linearized equation for the variation of the phase is
Now the stability of the Kolmogorov—Obukhov fixed
point is examined in terms of the eigenvalue spectra. The

system[Egs. (3)—(4)] is written as 8¢n=—2 (Dnm—Com) 8- (17
u="f(u) Thus the stability eigenvalues of modulus and phases dif-
. (120  fer only in a minus sign in front of the cascade term. We
6=9g(u,0). obtain similar results as in Reff14]. For values of6< &y
~0.37 all the eigenvalues of both phase and modulus matrix
The Jacobian matrix is symbolically given by have a negative real part. Above this value, some of the real
eigenvalues of the phase matrix turn complexpairg and
af(u) cross the imaginary axis. A8=0.5 they have become real
au 0 again, but now positive. This situation is shown in Fig. 3.
J= ) (13)  The eigenvalues of the modulus matrix eventually turn posi-
ag(u,6) dg(u,o) tive at §~0.7. In Fig. 3 we have multiplied both real and
au a0 imaginary part with a factop [14]:
The matrixag(u, 6)/du will not matter for the eigenvalues b= log,(1+2%0]) (18
of J. The eigenvalues off (u)/du were studied in Ref§14] |o] '

and [13]. It is most convenient to look at disturbances of _ _ _
phase and modulus of the velocity varial=ne *» un (8 P FIOR8 TRt TE O o ometant ratios, they
—,(0 _ 4(0) : . ,
=uy’+déu, and ¢,= + 8¢, . One then obtains for the ) .

n " $n=n n are evenly spaced on the plot. Thus we are able to visualize
both the very small and very large eigenvalues.

It is quite trivial to generalize this method to the passive
5Un=—2 (Dt Cron) SU (14) scalar in order to calculate the eigenvaluesdgfu,0)/96

and one finds

stability of the modulus

The matricedD,,,, andC,,,, are the contributions of the dis- - 9
sipation and cascade terms, respectively. Their expressions 5‘9”__% (Dnm+ Bom) 66m, (19)
are

where D/ is the dissipation term, very similar to the one
Dnm= Vkﬁ Snm (15 before

and DJn=DK28m (20)
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50 . u, (in n). If one inserts in the matriB,, a fixed point of an
Im(a)p imaginary model without period 3, one finds one branch in
each half plane.
30 | o Let us now consider what the above imply for the dynam-
ics of the model. At timeg=0, starting from the particular
10 + state of the scalap,(0) we impose a small perturbation:
0,(0)=6,(0)+ 56,(0) and determines how the perturbation
[e.oo RN o] . A . . .
evolves in time, subjected to theamevelocity field. For
-10 modulus and phase @@ we have again Eq$19) and(22),
since the matrice® ? andB do not depend od. Because the
_ a eigenvalues oB— D? have negative real parts, the perturba-
30 ; . . .
tion will damp out, meaning that after some tin#(t)
~6,(t). This has been observed already by Crisattal.
-50 60 ;’0 [24]. We conclude that the passive scalar cannot be chaotic

in itself: chaos can only be induced by an irregular velocity
field. But can it be more intermittent? We investigate this
issue in some detail in Sec. V.

FIG. 4. Eigenvalues of phase matri¥() and amplitude matrix

(0O) for the passive field in a polar plot @=0.5. V. INTERMITTENCY

andB,, is the contribution of the cascade term given by The term intermittency is used in different contexts and a
precise mathematical definition does not exist. In turbulence
1 9 one speaks of intermittency corrections to the Kolmogorov
Bnm=§ W(kn(un_10n+l_un+10n—1) or Obukhov—Corrsin power law. In dynamical systems in
m general, intermittency means the presence of quiescent peri-
~Kp—1(Up_ 2601+ Up_16n_5) ods randomly interrupted by burst. It is believed that these
phenomena are related: the scaling corrections should have
TKny1(Uns20n+1Ft Unr160n42)). (21)  their origin in intermittent behavioiin space and/or timeof
velocity or energy dissipation. Here we ask ourselves the
We see thaB,,,, does not depend of as thed variation will question whether the more pronounced deviations from clas-
be differentiated out. sical scaling for the passive scalar are reflected by a more
For the phase disturbane®),, one gets intermittent behaviofin time) of the passive scalar field. In

order to test this we invoke a definition of intermittency for
dynamical systems proposed by Begtial. [2].
Sn=—2 (Dfin=Bnm) 8m. (22 First, the response functidR(7) is defined as the rate at
m

which a disturbance vectaix(t) of the systenx=f(x) has
expanded after a time
We note that sinceB, ;o= 3Kns1Unr1=—Bni2n and
Bnn+1= 7 (Kn+ 1Uns ot KoUp_1)=— Bn+1n, the matrixBpp, |ox(t+ 7)|
is antisymmetric and its eigenvalues will be purely imagi- R(n)=——"——. (23
nary. The stability of phase and modulus will thus be the | ox(1)]

samez. This is actually a consequence of the conservation ¢f haotic systems one typically observes théx(t+ 7)|
=[ 6| . In the model any cascade te@un ' 0y has to ~|6x(t)|e™, whereX is the maximum Lyapunov exponent.
be supplemented by a terman yUnin - 0n-n, SINCE  This maximum Lyaponov exponent can be calculated by av-
the conservation impliex 6,6,=0. The first term gives a eraging theinstantaneousLyapunov exponents IR(7)/7
contribution to the matriB,,: By i nr=apUnin, the sec-  \ =lim (InR(D)/.
ond B, n_p=—ap_nUpsn—n Which corresponds to .
Bi+n7n=—apUn+n - The matrix is thus antisymmetric and
this is not an artifact of .th? model since it stems from amittency parametep. is thus defined as thgariance of
conservation law also valid in a real system. InR(7) [2]

For the eigenvalues of the stability matrik=— (D"
+B) we easily obtain the inequality Re<0 sinceD? is (INR(7))?) —(INR(7))2=pur. (24)
diagonal with strictly positive elements. This is true what-
ever the driving velocity and thus one does not expect to find In shell models the maximal Lyapunov exponent turns out
any bifurcations. to be inversely proportional to the time scale of the smallest

Indeed one finds that for all values 6f the spectrum of eddies and the disturbance vector first Lyapunov vector
eigenvalues of the phase matrix is similar to that shown iris localized in the inertial rangl6,23. We thus believe the
Fig. 4, where the eigenvalues are again multipliedob®ne  quantity u characterizes the temporal intermittency of the
observes evenly spaced eigenvalues organized in branchesascade process.
The presence of three brancHasboth upper and lower half Numerically we proceed as follows: the equations of mo-
of the complex planemight be caused by the period three of tion (3)—(4) are numerically integrated along the equations

Intermittency can be thought of as connected to the fluc-
tuations of the instantaneous Lyapunov exponent. An inter-
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for the disturbance vectobx=J(x)5x, where §)=(u,6) The intermittency parametegs differ, on the other hand,

andJ is the Jacobian matrix. We then estimate the responsgignificantly from each other. We findor 5=0.5): u("*%

function and the first two cumulants of its logarithm. From =0.127+0.003, x(¥=0.125+0.003, and u(?=0.151

time to time the disturbance vector is renormalized in ordert 0.003. Thus the passive scalar behaves equally chaotic, but

to avoid numerical overflo26]. more intermittent, than the velocity. In order to understand
Consider now the Lyapunov exponents of the full systenthis we write the equation fof as follows:

of velocity and passive scalar field, Eq8)—(4), with the )

parameters, Eq(9). We distinguish how the perturbation, 0=A(u)o+f, (30

initially applied equally on both systems §u,= 460,

= constant for alln) evolves independently in each of the whereA is a matrix depending on, whose eigenvalues

two parts of the system. Therefore we introduce responshllfill the inequality Reoc<0. Thus, ifu is constant in time,

functions that measure the expansions on the velocity pa Will converge to its fixed pointd=—A(u) " *f. Alterna-

“fixed point” will fluctuate as well. Moreover the conver-

W), |su(t+7)| gence towards it will be irregular since the eigenvalues of
Ri™(7)= Csu(t)] A(u) vary. It is therefore natural to expect that the behavior
(25) of # is more intermittent than that af.
ROy = |66(t+ 1)
(1= |s6(t)] - VI. CONCLUSIONS AND OUTLOOK
The corresponding maximal Lyapunov exponents is defined We studied various properties of a shell model for the
as advection of a passive scalar. We calculate its fixed point and
show that it does not follow the Obukhov—Corrsin scaling,
w_(In RW(7)) which is only recovered in the limb— 0. This suggests that
N =, 26 the scaling properties of the passive scalar are much more

.
sensitive than the velocity to noninertial properties such as

and the analog fox(?). This is reminiscent to the “Eulerian the dissipation and perhaps also the forcing. In experiments
Lyapunov exponent” and ‘“Lagrangian Lyapunov expo- the scaling zones of the passive scalar are less clearly ob-
nent” introduced by Crisantet al. [27,24. However the served and some “nonuniversality(with respect to large
Lagrangian behavior of the particles is only equivalent to thescale conditionsseems to have been observed in R28].
Eulerian passive scalar field in the case of vanishing diffu-This however seems to be due to the lack of local isotropy, a
sion. question which cannot be addressed in the context of scalar
The intermittency parameters are related to the varianceiodels.
of InR(7) is the same way as before. We find numerically Furthermore we have calculated the eigenvalue spectrum
of the fixed point and shown that the passive scalar part is
NFD~)\W~)\(?=0.165+0.002, (27)  stable against perturbations. This is in fact not very surpris-

ing since it follows from conservation 6t|6|2. It implies

where we h(ai\ie;)denoted the Lyapunov exponent for the fu'lhat the passive scalar field cannot be more chaotic than the
system ash . One expects theoretically velocity

A0 = may A\ (W \ (9] (28) Th_is is confirmed by _measur_ing Lyapunov exponents of
passive scalar and velocity: we find)~\(?. We also mea-
since the disturbance vector will evolve towards the mossure intermittency parameters of the passive scalar and ve-
expanding direction. For the same reason we expectsthat locity. The the passive scalar behaves more intermittently:
<\ 56 cannot grow faster thadu since that would mean )< x(?), which is in agreement with its more pronounced

that after some time we would have deviations from linear scaling. It remains to be seen whether
these relations are “generic” or whether can also fid§
. dg(u, 6) <\ ()<, (W i B
S0=AS0+ a( Su~ASH. 29 MY and w p'Y, for instance for lower Prandtl num

bers. It could also be interesting to investigate the relation
between coherent structures in the GOY md@él,21] and
As we have seen the matrikhas all negative eigenvalues so those in the passive scalar model.
66 would shrink: we face a contradiction and conclude that
S

Our result is obviously in agreement with both relations.
For the Eulerian and Lagrangian Lyapunov exponent, one J.K. is grateful to the Niels Bohr Institute for their warm
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